Schlagwort-Archive: München 2022

Prof. Dr. Dr. Oliver Ambacher

Prof. Dr. Dr. Oliver AmbacherFraunhofer-Institut für Angewandte Festkörperphysik (IAF), Freiburg

Quantencomputing
Die Performance von Quantencomputern nähert sich der Leistungsfähigkeit klassischer Hochleistungsrechner, ohne dass eine prinzipielle Limitierung in einer weiteren Steigerung der Anzahl an gekoppelten Quantenbits und damit der maximal erreichbaren Rechenleistung besteht.

Quantenprozessoren arbeiten intrinsisch hochparallel und dies ohne eine Hardware mit mehreren Prozessorkernen zu benötigen. Die Nutzung dieser intrinsischen Parallelität erfordert allerdings einen Umgang mit dem probabilistischen Charakter der Quantenphysik und das Kompilieren von Algorithmen in Quantengattern. Die zunehmende Verfügbarkeit von unterschiedlichen Qubit-Plattformen für die Entwicklung quantenbasierter Rechenstrategien eröffnet seit jüngster Zeit die Evaluation völlig neuartiger Lösungsansätze zur Simulation neuartiger Wirkstoffe und Materialien, zur Berechnung komplexer Optimierungsprobleme und zur Etablierung maschineller Lernverfahren.

Im Rahmen des Beitrags werden die Funktionsweise von Quantenbits und Quantengattern, der Stand der Technik sowie der Weg zu nationalen Quantencomputern vorgestellt und erklärt.

Zur Person
Prof. Dr. habil. Dr. rer. nat. Oliver Ambacher erhielt 1989 sein Diplom und und 1993 seinen Doktor der Naturwissenschaften an der Ludwig-Maximilians- und der Technischen Universität München mit Auszeichnung. 1993 bekam er eine Stelle als wissenschaftlicher Assistent am Walter Schottky-Institut der Technischen Universität München. Dort beschäftigte er sich mit dem Wachstum von Galliumnitrid und seinen Legierungen mit Hilfe der Molekularstrahlepitaxie und der chemischen Gasphasenabscheidung. 1995 konzentrierte er die Forschungsarbeit seiner Gruppe auf die Entwicklung von GaN-basierten elektronischen und optischen Komponenten. Er war maßgeblich an der Implementierung der ersten UV-Detektoren, Oberflächenwellenkomponenten, Mikrowellenverstärker und Sensoren sowie an der Erforschung polarisationsinduzierter Effekte in GaN-basierten Hetero- und Quantenstrukturen beteiligt. 1998/99 wurde ihm von der Alexander von Humboldt-Stiftung ein Feodor Lynen-Stipendium gewährt, um seine Arbeit auf dem Gebiet der AlGaN/GaN-Transistoren für Hochfrequenz-Leistungsverstärker an der Cornell University (USA) zu vertiefen. Nach seiner Habilitation in experimenteller Physik im Jahr 2000 wurde er ein Jahr später zum Professor für Nanotechnologie an der Technischen Universität Ilmenau ernannt. 2002 wurde er zum Direktor des Instituts für Festkörperelektronik gewählt und zwei Jahre später zum Direktor des Zentrums für Mikro- und Nanotechnologien ernannt. Oliver Ambacher ist seit Oktober 2007 Professor an der Albert-Ludwig-Universität in Freiburg, wo er derzeit an der Entwicklung von Quantensensoren und elektronischen Bauteilen für Quantencomputer arbeitet.

Prof. Dr. Peter H. Seeberger

Prof. Dr. Peter H. SeebergerMax-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam

Impfstoffe aus Zucker
Die meisten Krankheitserreger, darunter Bakterien, Pilze, Viren und Parasiten, tragen einzigartige Zucker auf ihrer Oberfläche. Derzeit werden mehrere Glykokonjugat-Impfstoffe gegen Bakterien erfolgreich eingesetzt. Da viele Krankheitserreger nicht kultiviert werden können und die Isolierung reiner Oligosaccharide schwierig ist, sind synthetische Oligosaccharid-Antigene eine attraktive Alternative. In diesem Vortrag beschreibt er einen Ansatz zur Entwicklung halb- und vollsynthetischer Glykokonjugat-Impfstoffe gegen schwere bakterielle Infektionen, einschließlich resistenter Krankenhauskeime. Dieser Ansatz wird durch Oligosaccharide ermöglicht, die durch automatisierte Glycan-Assemblierung (AGA) hergestellt wurden.

Impfstoffkandidaten zum Schutz vor Clostridium difficile und Klebsiella pneumoniae werden derzeit klinisch getestet. Synthetische Oligosaccharide dienen als Basis für Werkzeuge wie Glykan-Mikroarrays und zur Herstellung monoklonaler Antikörper zur Krebsbehandlung.

Zur Person
Peter H. Seeberger (geb. 1966) studierte Chemie an der Universität Erlangen-Nürnberg und promovierte in Biochemie an der University of Colorado. Nach einem Postdocaufenthalt am Sloan-Kettering Institute for Cancer Research in New York City war er von 1998-2002 Assistant Professor und Firmenich Associate Professor (tenured) am Massachusetts Institute of Technology (MIT) in Cambridge, USA. Von 2003-2009 war er Professor an der ETH Zürich und 2008 Vorsteher des Laboratoriums für organische Chemie. Seit 2009 ist er Direktor des Departments für Biomolekulare Systeme am Max-Planck Institut für Kolloid- und Grenzflächenforschung in Potsdam und Professor an der Freien Universität Berlin. Seit 2011 ist er Honorarprofessor an der Universität Potsdam. Er ist Mitglied des Senats der Max-Planck Gesellschaft und des Stiftungsrates der Tierärztlichen Hochschule Hannover. Seit 2021 ist er Vizepräsident der Deutschen Forschungsgemeinschaft.

Professor Seebergers Forschung wurde in über 620 Artikeln, fünf Büchern, mehr als 50 Patentfamilien publiziert und in über 900 Vorträgen präsentiert. Er ist einer der Editoren des Standardwerks „Essentials in Glycobiology“. Zu den mehr als 40 Preisen zählen der Körber Preis der Europäischen Wissenschaften (2007) und die Wahl zu einem der „100 wichtigsten Schweizer“. Er ist gewähltes Mitglied der Berlin-Brandenburgischen Akademie der Wissenschaften. Bisher wurden 66 seiner ehemaligen MitarbeiterInnen auf Professuren berufen.

Peter H. Seeberger setzt sich als Herausgeber der platinum open access Zeitschrift „Beilstein Journal for Organic Chemistry“ (kostenlos für AutorInnen und LeserInnen) besonders für neue, allgemein zugängliche Modelle des Publizierens ein. Als Mitgründer der Tesfa-Ilg “Hope for Africa” Foundation bemüht er sich um verbesserte Lebensbedingungen in Äthiopien.

Aus den Arbeiten im Seeberger-Labor sind mehrere erfolgreiche Firmen in Deutschland, den USA, der Schweiz und Dänemark hervorgegangen.

Prof. Martin Hrabě de Angelis

Prof. Martin Hrabě de AngelisHelmholtz Zentrum, München

Vererbung erworbener Eigenschaften – was Darwin und Lamarck bereits ahnten
Die Erforschung und Charakterisierung krankheitsrelevanter Genvarianten hat in den letzten beiden Jahrzehnten unglaublich viel an Wissen und Daten generiert. Genetische Elemente können in mutierter Form erblich bedingte Krankheiten hervorrufen. Diese sind im Einzelfall selten, aber in der Summe häufig. Bei komplexen Erkrankungen, wie z.B. kardiometabolischen Erkrankungen, spielen viele Genvarianten gleichzeitig eine Rolle, wobei auch Umweltfaktoren maßgeblich an der Pathogenese beteiligt sein können.

Am Beispiel des Diabetes mellitus werden aktuelle Forschungsergebnisse präsentiert, die belegen, dass neben der klassischen Vererbung über DNA-Varianten auch die epigenetische Vererbung erworbener Eigenschaften bei der Entstehung der Erkrankung eine Rolle spielt. Dass dies keinen Widerspruch zu Darwins Evolutionstheorie darstellt, mag erstaunen und wird diskutiert.

Zur Person
Prof. Martin Hrabě de Angelis erforscht die Rolle der Genetik in Gesundheit und Krankheit mit dem Schwerpunkt der pathophysiologischen Aufklärung von Diabetes. Dabei nimmt die Entwicklung von Datenbanken und die Anwendung moderner Data Mining Methoden einen hohen Stellenwert ein.

Er studierte Biologie (Lehramt) in Marburg und promovierte 1994 über den Einfluss von Wachstumsfaktoren auf die frühe Embryonalentwicklung. Während seiner Zeit als Postdoc am Jackson Laboratory in Bar Harbor (USA) untersuchte er den Delta/Notch Signalweg und Modelle zur Somitogenese. Seit 2000 ist er Direktor des Instituts für Experimentelle Genetik am Helmholtz Zentrum München. 2003 wurde er auf den Lehrstuhl für Experimentelle Genetik an der TUM berufen. Zugleich ist er Direktor des europäischen Forschungskonsortiums „INFRAFRONTIER“.

2001 gründete er am Helmholtz Zentrum München die German Mouse Clinic (GMC) zur systemischen Analyse von Modellen für menschliche Erkrankungen. Hrabě de Angelis ist Autor von über 600 Forschungsartikeln, die >39.000 mal zitiert wurden. Er leitet Forschungsprojekte auf nationaler sowie internationaler Ebene und ist Gründer und Vorstand des Deutschen Zentrums für Diabetesforschung (DZD).

Am Mausmodell hat Hrabě de Angelis mit seinem Team nachgewiesen, dass durch Ernährung verursachte Fettleibigkeit und Diabetes sowohl über Eizellen als auch über Spermien epigenetisch an die Nachkommen vererbt werden können. Durch großangelegte genetische Untersuchungen gelang es ihm, ein Netzwerk aus Genen zu identifizieren, die eine wichtige Rolle bei der Entstehung von Stoffwechselerkrankungen wie beispielsweise Diabetes spielen könnten.

2016 erhielt er die Ehrendoktorwürde (Dr. med. h.c.) der Eberhard-Karls-Universität Tübingen und 2018 die Ehrendoktorwürden (Dr. vet. med. h.c.) der Ludwig-Maximilians-Universität München und (Dr. med. h.c.) der Technischen Universität Dresden. Ebenso ist er seit 2018 Mitglied der Nationalen Akademie der Wissenschaften Leopoldina.

Hrabě de Angelis entwickelte in Gründerteams wissenschaftliche Ideen bis zur Innovation und ist erfolgreicher Mitgründer mehrerer Biotech-Firmen.

Dr. Oliver Krause

Dr. Oliver KrauseMax-Planck-Institut für Astronomie, Heidelberg

Das James-Webb-Weltraumteleskop
Am 25. Dezember 2021 ist nach mehr als 25-jähriger Entwicklungszeit das James-Webb-Weltraumteleskop (JWST) ins All gestartet. Mit einem 6,5 m-Hauptspiegel und leistungsfähigen Beobachtungsinstrumenten ausgestattet ist JWST das größte, leistungsfähigste und komplexeste Weltraumteleskop, das jemals gebaut wurde.
Aufgrund seiner enormen Empfindlichkeit und Winkelauflösung soll JWST bahnbrechende neue Erkenntnisse in vielen Bereichen der Astronomie und Astrophysik liefern. JWST wird deshalb oft als Nachfolger des erfolgreichen Hubble-Weltraumteleskops bezeichnet. Die Inbetriebnahme des JWST und seiner wissenschaftlichen Instrumente ist bisher reibungslos verlaufen, und am 12. Juli 2022 werden der Öffentlichkeit die ersten wissenschaftlichen Aufnahmen präsentiert werden.
Im Vortrag werden die wissenschaftliche Zielsetzung der Mission und die ersten wissenschaftlichen Ergebnisse vorgestellt sowie die technologischen Herausforderungen beim Bau des Satelliten diskutiert.

Zur Person
Dr. Oliver Krause leitet am Max-Planck-Institut für Astronomie in Heidelberg die Forschungsgruppe „Infrarot-Weltraumastronomie“ und war an der Entwicklung und dem Bau zweier JWST-Instrumente beteiligt.

Prof. Dr. Reinhard Genzel

Prof. Dr. Reinhard GenzelNobelpreisträger für Physik 2020
Max-Planck-Institut für extraterrestische Physik, Garching

Eine 40-jährige Reise
Vor etwas mehr als 100 Jahren veröffentlichte Albert Einstein seine Allgemeine Relativitätstheorie. Ein Jahr später löste Karl Schwarzschild die entsprechenden Gleichungen für eine nicht rotierende kompakte Masse. Ist diese Masse hinreichend groß und kompakt, kann sogar Licht nicht mehr entkommen, wenn es einen bestimmten Abstand zur Gravitationssingularität im Zentrum überschritten hat – den so genannten Ereignishorizont. Das theoretische Konzept eines ‚Schwarzen Lochs’ war geboren und wurde in späteren Dekaden von Penrose, Wheeler, Kerr, Hawking und anderen weiterentwickelt. Der erste Hinweis auf die Existenz solcher Schwarzen Löcher in unserem Universum wurde durch die Beobachtungen von Röntgen-Doppelsternen und leuchtenden Quasaren geliefert. Ich werde die 40-jährige Reise beschreiben, die meine Kollegen und ich unternommen haben, um mit lang andauernden und immer präziser werdenden Beobachtungen der Bewegungen von Gas und Sternen als Testobjekte für Raum und Zeit die Masse im Zentrum unserer Milchstraße nachzuweisen und ihre Kompaktheit zu bestimmen. Diese Studien belegen die Existenz eines kompakten Objektes mit einer Masse von 4 Millionen Sonnenmassen, die ohne Zweifel einem einzigen massereichen Schwarzen Loch zugeordnet werden kann.

Zur Person
Prof. Dr. Reinhard Genzel (geb. am 24.3.1952 in Bad Homburg) ist Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Wissenschaftliches Mitglied der Max-Planck-Gesellschaft und Professor an der Graduate School for Physics and Astronomy der University of California in Berkeley. Er ist einer der weltweit führenden Forscher auf dem Gebiet der Infrarot- und Submillimeter-Astronomie. Seine Forschungsschwerpunkte sind Experimentelle Astrophysik, Schwarze Löcher, Galaxienkerne, Galaxienentwicklung, Sternenentstehung und extragalaktische Astrophysik. 2020 erhielt er den Nobelpreis für Physik, gemeinsam mit der US-amerikanischen Astronomin Andrea Ghez, für die Entdeckung eines supermassereichen kompakten Objekts im Zentrum unserer Galaxie, der Milchstraße.

Mike Kramler¹,
Marion Pellowski²
Dr. Miriam Voß³

Mike Kramler - oben im Bild, Marion Pellowski - Bildmitte, Dr. Miriam Voß - unten im Bild¹ Betriebsingenieur des TUMlab (Experimentierlabor der TU München im Deutschen Museum)
² Diplom-Physikerin, wissenschaftliche Mitarbeiterin im Deutschen Museum
³ Diplom-Biologin, Projektleiterin des TUMlab

Remote gemeinsam experimentieren
Zusammen etwas Neues ausprobieren, entdecken, praktisch arbeiten – durch die Corona-Pandemie sind viele Möglichkeiten für das Experimentieren im Unterricht entfallen oder sehr reduziert worden. Das Erasmusplus-Projekt „Hands-on-Remote“ stellt aus dieser Erfahrung heraus die Fragen: Wie können Schülerinnen und Schüler zusammen im Team experimentieren, selbst, wenn sie an verschiedenen Orten sind? Wie lassen sich Hands-on-Experimente sinnvoll in den Distanzunterricht einbinden? Wie kann eine Verbindung zwischen den Schülerinnen und Schülern gelingen, die sie zum Mitmachen anregt?

Die europäischen Partner – Portugal, Polen und Deutschland – haben je ein Unterrichtsmodul entwickelt zu den Themenfeldern Schall und Akustik, Sensoren und Messungen sowie Automatisierung in Miniatur, mit dem sie diese Fragen auf unterschiedliche Weisen beantworten. Der Workshop gibt Einblick in das Projekt und lädt zum Mitexperimentieren ein. So können Sie z.B. die Online-Simulationsumgebung „Wokwi“ kennenlernen. Sie erfahren, wie Sie durch die Übertragung von Lichtsignalen in einer Videokonferenz echte Zusammenarbeit fördern können. So viel sei verraten: Das Lichtsignal löst trotz räumlicher Distanz einen realen Effekt beim Team-Partner aus.

Koordiniert wird das Erasmusplus-Projekt „Hands-on-Remote“ von der Abteilung Bildung des Deutschen Museums.

Zu den Personen
Mike Kramler ist Betriebsingenieur des TUMlab, des Experimentierlabors der Technischen Universität München im Deutschen Museum. Für das Projekt „Hands-on-Remote“ hat er eine kleine Mini-Produktionsanlage entwickelt, um die größere Fertigungsstraße aus dem TUMlab in eine kleine programmierbare Einheit für zuhause und fürs Klassenzimmer zu verwandeln. Er hat das TUMlab seit 2005 mit aufgebaut, leitet Fortbildungen für Lehrkräfte und konzipiert MINT-Kurse für Schulklassen. Er unterrichtete an einer Münchner Berufsschule und entwickelte an der Fachhochschule München Motivationskurse für Kinder. Mike Kramler schloss eine Ausbildung zum Kommunikationselektroniker ab, absolvierte an der FH München das Studium der Elektrotechnik und arbeitete mehrere Jahre in einem Ingenieurbüro.

Marion Pellowski ist Diplom-Physikerin und wissenschaftliche Mitarbeiterin im Erasmusplus-Projekt „Hands-on-Remote“. Sie hat die Mini-Produktionsanlage mit entworfen, zahlreiche, auch interaktive, Begleitmaterialien entwickelt und das Unterrichtskonzept auf verschiedene Unterrichtssituationen – remote und vor Ort – ausgerichtet. Sie ist wissenschaftliche Mitarbeiterin im Deutschen Museum und an der TU München und unter anderem aktiv in der Abteilung Bildung des Museums und in der Didaktik-Werkstatt TUMlab-Forum. Frau Pellowski hat als Lehrkraft an einem Münchner Privatlehrinstitut gearbeitet. Als wissenschaftliche Mitarbeiterin und als freiberufliche Referentin hat sie zahlreiche Workshops für Schulklassen ausgearbeitet und geleitet sowie Fortbildungen für Lehrkräfte organisiert, gestaltet und durchgeführt.

Dr. Miriam Voß ist Projektleiterin des TUMlab bzw. der TUMlab-Forum Didaktik-Werkstatt. Sie hat die Konzeption des Unterrichtsmoduls eng begleitet und entwickelte eine Unterrichtseinheit, um die Mini-Produktionsanlage und das Thema Automatisierung in einen sozialen Kontext zu setzen. Sie hat das TUMlab als Lehr-Lern-Labor konzipiert und aufgebaut. Frau Voß ist zuständig für die anwendungsbezogene Begleitforschung und die darauf basierende Weiterentwicklung des Labors und der Kurse. Sie ist Diplom-Biologin und leitet Kurse mit entsprechendem naturwissenschaftlichem Schwerpunkt. In ihrer Promotion am Institut für Wissenschafts- und Technikforschung (IWT, Universität Bielefeld) legte sie ihren Fokus auf Medien- und Wissenschaftskommunikation.

Dr. Sebastian Staacks

Dr. Sebastian StaacksRheinisch-Westfälische Technische Hochschule Aachen

phyphox – eine Hand voll Physik
Etwa 95% aller Jungendlichen bzw. jungen Lernenden besitzen Smartphones. Mit der freien App phyphox verwandeln sich diese – oder auch Tablets – in mobile Labore. Damit sind naturwissenschaftliche Experimente losgelöst von Materialsammlungen und spezialisierten Werkzeugen möglich. Einige Beispiele und Anregungen sowie Wege, das Potenzial zu erweitern, werden gezeigt und – soweit möglich – gemeinsam erkundet.

Bitte vorab phyphox installieren: phyphox

Download phyphox Der QR-Code führt ebenfalls zur Downloadseite von phybox.

Zur Person
Dr. Sebastian Staacks schloss seine Promotion in der experimentellen Festkörperphysik am II. Physikalischen Institut A der RWTH Aachen University mit einer Dissertation zur Spinkohärenz und Spindynamik in Zinkoxid Mitte 2014 ab. Im Anschluss beschäftigte er sich mit der Ende 2016 veröffentlichten Experimentier-App „phyphox“ und widmet sich als Akademischer Rat an der RWTH Aachen dem Einsatz digitaler Werkzeuge in der Physiklehre. Seine Arbeit um phyphox wurde vom Verband zur Förderung des MINT-Unterrichts (MNU) mit dem Archimedespreis (2019), von der AG Physikalische Praktika der Deutschen Physikalischen Gesellschaft (DPG) mit dem Wilhelm-Westphal-Lehrpreis (2019) und zuletzt vom Stifterverband zusammen mit der DPG und weiteren mit dem Ars Legendi Fakultätenpreis (2020) ausgezeichnet.

Dr. Tobias Schüttler

Tobias SchüttlerDLR Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen
DLR_School_Lab, Oberpfaffenhofen

Die Erde in neuem Licht betrachtet – der deutsche Umweltsatellit EnMAP
Unser Lebensraum – die Erde – unterliegt einem ständigen Wandel. Neben natürlichen Veränderungen stehen vor allem auch die menschgemachten immer stärker im Fokus der Öffentlichkeit. Aus Sicht der angewandten Raumfahrtforschung ist die Erdbeobachtung mit Satelliten allerdings kein neues Thema. Dabei spielt die Erfassung von Daten über den Gesundheitszustand des Blauen Planten eine zentrale Rolle.

Der Workshop des DLR_School_Lab, des Schülerlabors am Deutschen Zentrum für Luft- und Raumfahrt in Oberpfaffenhofen, gibt Einblicke in moderne Messverfahren der Umweltfernerkundung. An Hand von aktuellen Satellitenmissionen wie der des deutschen Hyperspektralsatelliten EnMAP und unterschiedlichen Anwendungsgebieten kann die Bedeutung dieses Forschungsbereichs nachvollzogen werden. Schulpraktische Überlegungen und erprobte Unterrichtsmaterialien helfen dabei, die gelernten Inhalte im naturwissenschaftlichen Unterricht ab der Mittelstufe konkret einzusetzen.

Zur Person
Dr. Tobias Schüttler studierte Physik und Mathematik für das Lehramt an Gymnasien an der LMU München, wo er 2007 die erste Staatsprüfung absolvierte. Nach dem Referendariat arbeitete er bis 2015 als Studienrat an einem Gymnasium und anschließend als wissenschaftlicher Mitarbeiter am Lehrstuhl für Didaktik der Physik der LMU München. Dort promovierte er 2021 zu Themen des außerschulischen Physiklernens im Raumfahrtkontext. Seit 2019 leitet er das DLR_School_Lab Oberpfaffenhofen, an dessen Aufbau und Entwicklung er maßgeblich mitbeteiligt war. Seine Forschungsinteressen sind das Lernen von Naturwissenschaften in Schülerlaboren und im Raumfahrtkontext sowie Begabtenförderung.

Kim Ludwig-Petsch

Kim Ludwig-PetschWissenschaftlicher Mitarbeiter im Bereich Bildung, Deutsches Museum, München

Bühnenreife Experimente: Science Shows im naturwissenschaftlichen Unterricht und an außerschulischen Lernorten
Physik und Technik sind unterhaltsam und interessant! – Diese Einstellung ist bei Lernenden im klassischen Unterricht oft schwierig zu vermitteln. Richtig eingesetzt, kann das Show-Format als idealer Eisbrecher wirken und das Interesse durch unterhaltsame Experimente wecken und fördern. Welche Ansätze gibt es dafür? Was muss man dabei beachten? Und wie lässt sich das im schulischen Rahmen umsetzen?

Interaktive Elemente spielen eine zentrale Rolle für eine erfolgreiche Show, da sie die Zuschauer aktivieren und partizipieren lassen. Die Wahl der Experimente und Materialien sind dabei genauso ausschlaggebend wie die Art der Präsentation. In diesem Workshop erfahren Sie mehr über das Konzept „Science Shows“ im Deutschen Museum und sehen an praktischen Beispielen, wie es im Unterricht umgesetzt werden kann.

Zur Person
Kim Ludwig-Petsch studierte Physik und Chemie auf Lehramt in Dortmund. Im Anschluss arbeitete er in der Schweiz zunächst als Gymnasiallehrer und später als Leiter Didaktik im Swiss Science Center Technorama. Seit 2015 ist er im Deutschen Museum als wissenschaftlicher Mitarbeiter im Bereich Bildung tätig und entwickelt dort u.a. neue interaktive Vermittlungsformate Außerdem ist er für die Weiterbildung der Museums-Kommunikatoren verantwortlich. Im Rahmen seiner Promotion an der TU Kaiserslautern beschäftigt er sich aktuell außerdem mit dem Einsatz von Smartphones als mobile Labore im Museum.

Prof. Dr. Wolfgang Ketterle

Prof. Dr. Wolfgang KetterleNobelpreisträger für Physik 2001
Massachusetts Institute of Technology, Cambridge (USA)

Experimente am absoluten Temperatur-Nullpunkt
Warum kühlen Physiker Materie zu extrem niedrigen Temperaturen? Warum ist es wichtig, Temperaturen zu erreichen, die mehr als eine Milliarde mal kälter sind als der interstellare Raum? In diesem Vortrag werde ich beschreiben, mit welchen Methoden man Atome auf Nanokelvin-Temperaturen abkühlt, wie man solche Temperaturen misst, und wie man neue Formen der Materie realisiert und beobachtet.

Zur Person
Wolfgang Ketterle wurde am 21. Oktober 1957 in Heidelberg geboren. Nach dem Abitur absolvierte er ein Physikstudium zunächst an der Universität Heidelberg und später an der Technischen Universität München, das er 1982 als Diplomphysiker abschloss. Von 1982 bis 1986 hat er anschließend an der Ludwig-Maximilians-Universität und dem Max-Planck-Institut für Quantenoptik promoviert. Nach seiner Promotion beschäftigte er sich am Max-Planck-Institut für Quantenoptik vor allem mit der Laserspektroskopie. 1990 ging er – zunächst als Gastforscher – an das renommierte Massachusetts Institute of Technology (MIT) in Cambridge, wo er sich einem neuen Forschungsfeld, der Grundlagenforschung im Bereich der Tieftemperaturphysik, zuwandte. Seit 1998 hat er dort die John D. MacArthur Professur für Physik inne und ist seit 2006 stellvertretender Direktor des Research Laboratory of Electronics sowie Direktor des Center of Ultracold Atoms.

2001 erhielt Wolfgang Ketterle zusammen mit Eric A. Cornell und Carl E. Wieman den Nobelpreis für Physik für die Erzeugung der Bose‐Einstein‐Kondensation und für grundsätzliche Studien über die Eigenschaften der Kondensate. Wolfgang Ketterle war einer der ersten Forscher, denen ein Bose‐Einstein‐Kondensat gelang. Er entwickelte zudem die Grundlagen für den Atomlaser, der von ihm erstmals 1997 realisiert wurde. Er erhielt neben dem Nobelpreis für Physik viele weitere Auszeichnungen.