Christian-Albrechts-Universität zu Kiel
Klimawandel und Meeresspiegelanstieg
Der Meeresspiegelanstieg ist ein hochaktuelles und besorgniserregendes Phänomen, das zunehmend Aufmerksamkeit auf sich zieht. In den letzten Jahrzehnten haben sich die Auswirkungen des Klimawandels verstärkt bemerkbar gemacht, und eine der gravierenden Konsequenzen ist der Anstieg des Meeresspiegels. Dieser Prozess wird durch die globale Erwärmung und das daraus folgende Abschmelzen von Gletschern und Eisschelfen in den Polregionen sowie durch die thermische Ausdehnung der Ozeane verursacht. Der Meeresspiegelanstieg bedroht Küstenregionen auf der ganzen Welt und hat schwerwiegende Auswirkungen auf Ökosysteme und die Lebensräume von Menschen. Es ist von entscheidender Bedeutung, das Verständnis für dieses Problem zu vertiefen und Maßnahmen zu ergreifen, um den Folgen des Meeresspiegelanstiegs zu begegnen.
Dieser Vortrag führt in die Problematik des Meeresspiegelanstiegs als Folge des Klimawandels ein. Die grundlegenden physikalischen Ursachen der unterschiedlichen Komponenten werden beschrieben und der aktuelle Kenntnisstand quantifiziert. Neben möglichen Prognosen für die zukünftige Entwicklung geht es um die regionalen Ausprägungen an den deutschen Küsten und die möglichen Anpassungsstrategien.
Zur Person
Prof. Dr. Arne Biastoch, geboren 1968 in Husum, ist ein Meeres- und Klimaforscher. Er studierte physikalische Ozeanographie an der Universität Kiel und promovierte 1998 mit einer Arbeit zur Ozeanzirkulation um Südafrika. Nach einem Auslandsaufenthalt am Scripps Institution of Oceanography, La Jolla, U.S.A., kehrte er 2001 an das Institut für Meereskunde Kiel, dem Vorläufer des heutigen GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel, zurück. Seit 2018 ist er Professor für Ozeandynamik an der Christian-Albrechts-Universität Kiel und dem GEOMAR. Am GEOMAR leitet er die Forschungsabteilung Ozeandynamik, die sich mit globalen Meeresströmungen und Hydrographie sowie deren Rollen im Klima beschäftigt. Auch interdisziplinäre Fragestellungen, etwa zur Verdriftung von marinen Organismen und Objekten, gehören zum Aufgabengebiet. Methodisch verwendet die Arbeitsgruppe hochauflösende Ozean- und Klimamodelle, die auf nationalen Höchstleistungsrechnern gerechnet werden. Biastoch ist Sprecher der Helmholtz School for Marine Data Science (MarDATA) und koordiniert dort die Doktorandenausbildung von marinen Datenwissenschaftlern in Kiel und Bremen.
Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt e.V., Berlin
Die Raumsonde JUICE auf dem Weg zum Jupiter
Im April 2023 ist die Raumsonde JUICE (Jupiter Icy Moons Explorer) vom ESA Weltraumbahnhof in Kourou (franz. Guayana) mit einer Ariane 5 Trägerrakete erfolgreich zum Jupitersystem gestartet. Ziel der Mission ist es, den Riesenplaneten, seine Magnetosphäre und die Galileischen Monde eingehend zu untersuchen. Dabei steht insbesondere Ganymed, der größte Mond des Sonnensystems, im Fokus. Nach Vorbeiflügen an den Monden Europa und Kallisto wird JUICE in der finalen Missionsphase in einen Orbit um Ganymed einschwenken. Für die Erforschung der Eismonde Jupiters, unter deren äußeren Eisschichten riesige Wasserozeane vermutet werden, spielt nicht zuletzt die mögliche Entwicklung von Leben außerhalb der Erde eine große Rolle.
Das Deutsche Zentrum für Luft- und Raumfahrt ist für den Betrieb und die wissenschaftliche Auswertung der Kamera (JANUS) und des Laser Altimeters (GALA) verantwortlich und damit maßgeblich an der Mission JUICE beteiligt. Nach dem Start und der Inbetriebnahme der Raumsonde sind die funktionalen Tests der Instrumente erfolgreich abgeschlossen worden. Im Vortrag werden neben den Zielen der Mission und den geplanten wissenschaftlichen Untersuchungen der Galileischen Monde auch die Entwicklung der Instrumente und deren Status nach dem Start erläutert.
Zur Person
Dr. Hauke Hußmann (geb. 1970) studierte Physik an der Universität Osnabrück und promovierte an der Universität Münster am Institut für Planetologie zum Thema der gekoppelten thermisch-bahndynamischen Entwicklung der Jupitermonde Io und Europa. Nach Post-Doc Stationen in Münster und an der Universität São Paulo in Brasilien ist er seit 2008 wissenschaftlicher Mitarbeiter am Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt e.V. in Berlin. Seit 2021 leitet er dort die Abteilung Planetengeodäsie.
Herr Dr. Hußmann ist wissenschaftlicher Leiter (Principal Investigator) des BepiColombo Laser Altimeters (BELA) der ESA Mission BepiColombo, die sich seit 2018 auf dem Flug zum Merkur befindet. Seit 2013 ist er außerdem wissenschaftlicher Leiter des Ganymede Laser Altimeters (GALA), welches im April 2023 als eines von 10 Instrumenten mit der ESA Raumsonde JUICE (Jupiter Icy Moons Explorer) zum Jupitersystem gestartet ist.
CEO & Mitgründer von GP JOULE
100% erneuerbare Energien für alle: Vision wird Wirklichkeit
Kann uns ein Energiesystem, das voll auf erneuerbare Energien setzt, versorgen? Ja. Es kann sogar viel mehr: Es kann Europa unabhängig machen von Importen und die langfristige und kostengünstigste Versorgung sicherstellen.
Um das zu erreichen, gibt es aber noch einiges zu tun. Im Jahr 2022 betrug der Endenergieverbrauch in Deutschland rund 2.300 TWh, die Erzeugung von Energie aus den Erneuerbaren lag bei rund 350 TWh.
Warum sind wir bei GP JOULE dennoch komplett überzeugt von der Vision „100% erneuerbare Energien für alle“, also davon, dass die Industrie, der Verkehr, die Haushalte und Betriebe komplett mit erneuerbaren Energien versorgt werden können? Weil wir sowohl die Flächen als auch alle benötigten Technologien dafür haben. Wir müssen allerdings Erzeugung, Umwandlung, Verteilung und Nutzung der Energie zusammendenken. Wir brauchen nachhaltige, zuverlässige Energielösungen mit erlebbarem Nutzen. Das heißt, dass wir beispielsweise den dezentral erzeugten Strom aus Wind- und Solarkraft nicht nur ins Netz einspeisen, sondern auch vor Ort in Wasserstoff und Wärme umwandeln sollten. So speichern wir Energie, können mehrere Sektoren dekarbonisieren und schaffen einen Mehrwert für die Menschen vor Ort.
Außerdem entkoppeln wir mit der Umwandlung des Stroms vor Ort den Ausbau der Erneuerbare-Energie-Anlagen vom Netzausbau. So können wir deutlich schneller Wind- und Solarparks zubauen und den gesetzlich verankerten Ausbau erfüllen: Schließlich sollen bis 2030 pro Jahr rund 30 Gigawatt Leistung zugebaut werden. Bis 2040 sollen dann 560 Gigawatt Wind (onshore)- und Photovoltaikleistung installiert sein.
Der politische Wille und die Machbarkeit sind also gegeben. Was wir nicht haben: Zeit. Denn die Klimakrise schreitet voran.
Also: Packen wir es an.
Zur Person
Ove Petersen, Jahrgang 1974, ist Mitgründer von GP JOULE und heute CEO der 2009 gegründeten Unternehmensgruppe mit ihren Hauptsitzen im schleswig-holsteinischen Reußenköge sowie im bayerischen Buttenwiesen.
Regional als auch auf Bundesebene wirkt der gelernte Landwirt und studierte Diplom-Agraringenieur in Verbänden, Arbeitsgruppen und auf unterschiedlichen Plattformen mit, etwa als Vorstandsvorsitzender von watt_2.0 und als Mitglied des Vorstands im Landesverband Erneuerbare Energien Schleswig-Holstein.
Die Vision „100 % Erneuerbar“ wirkt dabei stets als Antrieb hinter den Ideen, Projekten und Entscheidungen von Ove Petersen sowie der gesamten Unternehmensgruppe GP JOULE.
Massachusetts Institute of Technology, Cambridge (USA)
Lippmann-Fotografie inspiriert Farbenspiele in elastischen Materialien
Im Jahre 1891 präsentierte der luxemburgisch-französische Physiker Gabriel Lippmann eine Methode der Farbfotografie, die es ermöglicht das volle Farbspektrum abzulichten. Für seinen kreativen Ansatz, welcher im Gegensatz zu dem bekannteren subtraktiven Filter-und-Farbenmischverfahren auf Lichtinterferenzphänomen beruht, wurde Lippmann im Jahre 1908 mit dem Nobelpreis der Physik ausgezeichnet. Leider waren die Materialien und Prozesse, welche Lippmann zur Verfügung standen, nur schwierig zu handhaben. Mehr als ein Jahrhundert später verfügen wir endlich über Materialien, um Lippmanns Techniken effizient und skalierbar umzusetzen. Lippmann-Fotografie macht es uns seit kurzem möglich, Materialien mit dynamisch variierenden Farben optisch herzustellen. In dieser Präsentation möchte ich Ihnen nahebringen, wie wir in diesen Materialien den Regenbogen einfangen und dynamische mechanische Phänomene in Farbe visualisieren.
Zur Person
Mathias’ Forschungsinteressen umfassen dynamische optische Materialien, biologische Lichtmanipulations- und Wachstums-Prozesse und bioinspirierte optische Designkonzepte. Mathias studierte Physik an der Universität von Saarbrücken, der Université de Luxembourg und der Université de Lorraine von 2001–2006. Nach seiner Promotion als Stipendiat des Deutschen Akademischen Austauschdienstes an der University of Cambridge in 2010 arbeitete Mathias an der Harvard University als Feodor Lynen-Forschungsstipendiat der Alexander von Humboldt-Stiftung. Seit 2013 leitet er eine Forschungsgruppe am MIT und ist derzeit dort Associate Professor.
An Wochenenden (und manchmal auch Wochentagen, wenn der Wind gut steht) ist Mathias nicht am MIT zu finden, sondern verbringt die Zeit lieber in der Bostoner Hafengegend mit Windsurfen, Segeln oder Schnorcheln.
Christian-Albrechts-Universität zu Kiel
Mit Darwin gegen die Antibiotikakrise
Mikrobielle Krankheitserreger stellen eine enorme Bedrohung für die menschliche Gesundheit dar. Sie waren und sind für zahlreiche Epidemien und Pandemien verantwortlich, von denen einige die Geschichte der Menschheit maßgeblich beeinflusst haben. Erst im späten 19. und frühen 20. Jahrhundert wurden wirksame Behandlungsmethoden verfügbar, darunter auch Antibiotika, die gegen bakterielle Krankheitserreger wirken. Einige dieser Behandlungen führten jedoch zu neuen Problemen. Ein Beispiel hierfür ist die rasante Evolution und Ausbreitung von Antibiotikaresistenzen.
Wir befinden uns auf dem Weg in eine dramatische Antibiotikakrise: Immer mehr bakterielle Krankheitserreger weisen Resistenzen gegen verschiedene Antibiotika auf und können kaum noch behandelt werden. Wie können wir solche Probleme verhindern oder zumindest minimieren? In meinem Vortrag werde ich darlegen, dass die Entwicklung wirksamer Behandlungsstrategien die explizite Berücksichtigung der zugrunde liegenden evolutionären Dynamiken erfordert. Ich werde dies anhand von Beispielen aus unserer eigenen Arbeit veranschaulichen, die auf Evolutionsexperimenten im Labor beruht und mit denen wir neue Strategien für nachhaltige Antibiotikatherapien aufzeigen können.
Unterrichtsmaterialien zum Darwintag:
https://www.kec.uni-kiel.de/outreach/Darwintag2022_Unterrichtsmaterialien.php
https://evoecogen-kiel.de/outreach
Zur Person
Hinrich Schulenburg hat Biologie an der Universität Bielefeld und der University of Cambridge studiert. Seine Promotion an der Universität Cambridge schloss er im Jahr 2000 mit einer Arbeit über die Evolution von männertötenden Bakterien bei Marienkäfern ab. Anschließend arbeitete er als Postdoc und wissenschaftlicher Mitarbeiter an den Universitäten Münster und Tübingen, wo er die Forschung über die Wechselwirkungen zwischen C. elegans und Mikroben aufbaute. Seit 2008 ist er Professor an der Universität Kiel.
Seine derzeitige Forschung konzentriert sich auf die Dynamik von Wirt-Mikroben-Interaktionen, welche als Modell dienen, um unser Verständnis der Evolution zu verbessern. Seine aktuelle Arbeit hat zwei Schwerpunkte: (i) die Evolution des Modellfadenwurms C. elegans in Interaktion mit pathogenen, kommensalen und mutualistischen Bakterien und (ii) die Evolution von Antibiotikaresistenzen in bakteriellen Krankheitserregern. Seine Forschung ist ausdrücklich interdisziplinär und kombiniert Konzepte und Methoden aus der Ökologie, Mikrobiologie, Genetik, Genomik und Immunologie. Die Evolutionstheorie liefert die Kernfragen und die zentralen Untersuchungsansätze der einzelnen Forschungsprojekte.
Hinrich Schulenburg ist Sprecher des Kiel Evolution Center und des neu gegründeten Center for Translational Evolutionary Biology (CeTEB). Er ist (zusammen mit Stefan Niemann, Borstel) Mitbegründer des ersten Zentrums für Evolutionäre Medizin in Deutschland: dem Leibniz-Wissenschaftscampus Evolutionary Medicine of the Lung (EvoLUNG; gegründet 2016). Er ist Sprecher des DFG-geförderten Graduiertenkollegs Translationale Evolutionsbiologie (seit 2020), stellvertretender Sprecher des DFG-geförderten Sonderforschungsbereichs Ursprung und Funktion von Metaorganismen (seit 2016) und Mitbegründer (zusammen mit Ilka Parchmann und Tom Duscher) des Kiel Science Communication Networks (KSCN, seit 2021). Im Jahr 2017 erhielt er ein Max-Planck-Fellowship am Max-Planck-Institut für Evolutionsbiologie in Plön.
Nobelpreisträger für Chemie 2021
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Katalyse für die Welt
Die Katalyse ist eine unglaublich faszinierende Wissenschaft. Bei der Entwicklung von Katalysatoren, welche den Weg für die Umwandlung von Substraten in ein gewünschtes Produkt ebnen, kommt der Mensch der Magie so nahe wie nur irgend möglich. Denn der Katalysator, dieses kleine, molekulare Werkzeug, wird bei diesem Prozess nicht verbraucht. Und so reichen bereits sehr kleine Mengen davon, um Tonnen von Ausgangsstoffen in Wirkstoffe für Medikamente oder Duftstoffe für die Parfümindustrie umzuwandeln – und das bei deutlich geringerem Energieaufwand. Und auch wenn Chemiker bereits seit mehr als 100 Jahren Katalyseforschung betreiben, gibt es noch viel zu tun. Denn die Katalyse ist nicht nur ein wunderschönes Konzept, sondern auch eine sehr wichtige Technologie. Manche würden vielleicht sagen, sie sei die wichtigste Technologie für die Menschheit. Fachleute schätzen, dass die Katalyse zu etwa einem Drittel des weltweiten Bruttosozialprodukts beiträgt – das sind Zahlen in Billionenhöhe. Es gibt wahrscheinlich keine andere Technologie, die für sich in Anspruch nehmen kann, die Menschen zu heilen, zu erwärmen und zu ernähren und auch noch unsere Güter zu transportieren. Die Herausforderungen, vor denen die Menschheit derzeit steht, sei es die Ernährung der Weltbevölkerung, die Bekämpfung von Pandemien oder die Speicherung von regenerativen Energien, können nur mit Hilfe der Katalyse bewältigt werden. In meinem Vortrag werde ich über die Katalyse speziell mit organischen Molekülen sprechen und insbesondere darüber, wie starke und „umzäunte“ Säuren zu universellen Katalysatoren werden könnten.
Zur Person
Benjamin List wurde 1968 in Frankfurt am Main geboren. Er studierte Chemie an der Freien Universität Berlin und promovierte an der Goethe-Universität Frankfurt (1997, Prof. G. Mulzer). Am Scripps Research Institute in La Jolla in den Vereinigten Staaten arbeitete er von 1997 bis 1998 als Postdoktorand und von 1999 bis 2003 als Assistenzprofessor. Im Jahr 2003 wechselte er als Leiter einer Forschungsgruppe ans Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr und wurde dort 2005 einer der Direktoren. Diese Position hat er bis heute inne. Außerdem leitet er eine Forschungsgruppe an der Hokkaido Universität in Japan und ist als Honorarprofessor an der Universität zu Köln tätig. List wurde bislang mit Dutzenden von renommierten Preisen im Bereich der Chemie ausgezeichnet. 2021 erhielt er den Nobelpreis für seine Arbeiten zur asymmetrischen Organokatalyse. Benjamin List lebt in Mülheim an der Ruhr, ist verheiratet und ist Vater zweier erwachsener Söhne.
Head of Program, – FrontiersForYoungMinds
How to live longer: the Nobel Prize-winning discovery of telomeres
Wann: Samstag 17:00 – 17:45
Wo: CISPA – Helmholtz-Zentrum für Informationssicherheit
What if you could easily share with your class the groundbreaking discoveries which won Nobel Prizes in recent years, using an open educational resource? Join me to learn about Elizabeth Blackburn’s game-changing work on telomeres, for which she won the Nobel Prize in Physiology or Medicine in 2009, and how psychological, environmental and even social factors can work on these to change our DNA and have a measurable effect on our life expectancy and health. With our Frontiers for Young Minds journal, you can then help your students understand and implement the breakthrough learning of Nobel-level scientists in their own lives.
Zur Person
Laura has 17+ years’ experience in academic publishing, with 7 years as a manager at Frontiers, first leading core academic journal programs and now strategically directing the unique open-access, kids’ science-engagement project, Frontiers for Young Minds.
Passionate about Open Access and publishing innovation, her 10 years’ experience prior to Frontiers included commissioning and project managing STM books for Cambridge University Press and working as Editor-in-Chief of a digital content company. She has spoken at many academic conferences, both local, international and virtual, and recently pitched at the Falling Walls Science Summit as a Science Engagement Winner.
Ultracyclist
Was benötigt man, um 2000 Kilometer mit dem Rad am Stück zu fahren
Ultracycling ist Radfahren mit einer Distanz von mindestens 320 Kilometer am Stück ohne Pause. Das längste Rennen, welches Thorsten Weber gefahren ist, war das Race Across Austria mit 2200 Kilometer. Wer dieser Extremsportart nachgehen möchte, benötigt sehr viel Disziplin und Durchhaltewillen. Wer in diesem Sport ganz oben sein möchte, der muss bis zu 20 000 Kilometer im Jahr auf dem Rad sitzen. Das bedeutet, dass man zirka 20 Stunden pro Woche in seinen Sport investiert. Dies ist umso schwieriger, da der zweifache Familienvater zudem einem Vollzeit-Job als Elektroniker nachgeht. Damit sind Thorsten Weber Begriffe wie innere Motivation, Ziele setzen und das Unmögliche wagen, den inneren Schweinehund überwinden, gepaart mit Gefühlen wie aufgeben wollen, sich zusammenreißen und zugleich Freude und Stolz keine Fremdwörter. Von seinen Erfahrungen und wie man trotz aller Zweifel und Rückschläge wieder auf die Beine kommt, erzählt Thorsten Weber in seinem Vortrag. Wichtig ist ihm, den Zuhörern zu vermitteln, dass auch der Ultracycling-Sport zu 90 Prozent eine Teamarbeit ist. Denn nur mithilfe seines Teams ist er überhaupt in der Lage, diese langen Strecken auf dem Fahrrad zu absolvieren. Der Vortrag eröffnet unerwartete Einblicke in eine fremde Welt. Aus seinen außergewöhnlichen Erfahrungen können Jugendliche viele wertvolle Tipps in ihren Unterrichts- und Lebensalltag mitnehmen.
Zur Person
Thorsten Weber, Jahrgang 1978, lebt in Euskirchen und zählt in Deutschland zu den erfolgsreichsten Ultracyclisten. Allein letztes Jahr gewann er das 24-Stunden-Solo-Radrennen auf dem Nürburgring und das 24-Stunden-Solo-Radrennen in Duisburg. Neben einem Vollzeitjob und intensiven Trainingseinheiten hält der Familienvater immer wieder Vorträge, um von seinen Erfahrungen und Erlebnissen zu berichten.
Lehrstuhl für Messtechnik, Universität des Saarlandes, Saarbrücken
Sensoren im Smartphone – vom Mikrofon bis zur elektronischen Nase
Täglich benutzen Kinder und Jugendliche ihr Handy. Beispielsweise, um mithilfe von WhatsApp eine Kurznachricht an ihre Freunde oder Familienangehörigen zu schreiben. Ebenso wird es für das Telefonieren, Spielen oder Mobil-Surfen im Netz verwendet. Damit ist das Handy das Tor zur digitalen Welt. Aber genauso hört man Musik auf dem Handy, um einfach mal abschalten zu können. Dabei kann Dein Handy noch so viel mehr. In seinem Vortrag wird Prof. Dr. Andreas Schütze zahlreiche neue spannende Einblicke in die Welt der Smartphones geben und ausführlich erklären, was das Mobiltelefon alles bereits kann. Solltest Du beispielsweise einmal keinen Zollstock oder Maßband zur Hand haben, wenn du gerne wissen möchtest, wie groß Du bist, hilft Dir Dein Handy weiter.
Genauso verfügt Dein Handy über eine „elektronische Nase“, die bis zu 100 000 verschiedene Gerüche unterscheiden kann. Im Vergleich dazu schafft unsere menschliche Nase gerade einmal 350 verschiedene Gerüche voneinander zu unterscheiden.
Außerdem liefert er grundlegende Hinweise und praktische Tipps zu einem Studium der Naturwissenschaften in Saarbrücken.
Zur Person
Andreas Schütze studierte Physik und Mathematik an der RWTH Aachen und promovierte 1994 in angewandter Physik an der Justus-Liebig-Universität Gießen in der Arbeitsgruppe von Prof. Dr. Dieter Kohl. Der Titel seiner Promotion lautet „Präparation und Charakterisierung von Phthalocyanin-Schichten zum Nachweis oxidierender und reduzierender Gase“. Anschließend war er bei der VDI/VDE-IT GmbH, Teltow, insbesondere in der Projektförderung tätig. Von 1998 bis 2000 war er Professor für Sensorik und Mikrosystemtechnik an der Fachhochschule Niederrhein in Krefeld. Seit 2000 leitet Prof. Dr. Andreas Schütze den Lehrstuhl für Messtechnik an der Universität des Saarlandes in der Fachrichtung Systems Engineering. Neben seiner Hochschultätigkeit ist Prof. Schütze Gründungsmitglied des ZeMA Zentrums für Mechatronik und Automatisierungstechnik GmbH und Mitgründer der 3S GmbH – Sensors, Signal Processing, Systems, Saarbrücken. Prof. Schütze übt zahlreiche ehrenamtliche Tätigkeiten aus. Er ist u.a. seit 2015 Vorsitzender des VDE Saar, seit 2009 Vorstandsmitglied im Wissenschaftsrat der AMA, Verband für Sensorik und Messtechnik, und seit 2010 Vorsitzender des Fachgebiets Mess- und Sensortechnik der Dechema.
SHS – Stahl-Holding-Saar
Technische Herausforderungen der Transformation: Von dem LD-Verfahren zur Elektrostahlroute
Wann: Sonntag 13:30 – 14:15
Wo: CISPA – Helmholtz-Zentrum für Informationssicherheit
Dillinger und Saarstahl wollen Stahl klimaneutral produzieren. Der Zeitplan dafür ist ambitioniert, denn schon ab 2027 soll im Saarland „grüner“ Stahl produziert werden. Um dieses Ziel zu erreichen, stehen die saarländischen Stahlunternehmen vor einer Jahrhundertaufgabe: Umstellung voem sogenannten LD-Verfahren (Linz-Donawitz-Verfahren) auf die Elektrostahlroute. Der Vortrag gibt einen spannenden Überblick, welche Voraussetzungen für die Transformation notwendig sind und welche technologischen Herausforderungen gelöst werden müssen.
Zur Person
Dr. Daniel Rupp studierte an der Universität Saarbrücken Werkstoffwissenschaften. Promoviert hat er am Karlsruher Institut für Technologie, KIT 2010. Nach seiner Promotion war er wissenschaftlicher Angestellter am KIT, Institut für Materialforschung II. Seit 2011 arbeitet er in der Forschungs- und Entwicklungsabteilung der AG Dillinger Hüttenwerke. Seit 2022 ist er Koordinator der Transformationstechnologie.